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Abstract. The critical parameters for a problem in combustion theory for certain non-Class A geometries are
computed using a transcendental equation derived from the non-linear parabolic equation. When possible, results
are compared with existing ones in the literature.

1. Introduction

A simple model governing the combustion of a material can be formulated in non-dimen-
sional form as follows:

A = V2 + 6 exp( +); t > O,~D. (1.1)

Here, 0 is the temperature, x and t are respectively the spatial and time variables, and 6, a
are positive parameters. Analytical studies of the equation have been confined mainly to the
so-called Class A geometries, viz. the domain D is an infinite slab, an infinite circular
cylinder, or a sphere. The initial condition for (1.1) is usually taken as 0(x, 0) = 0, and the
boundary condition taken as 0 = 0. The natural boundary condition M0/av + fpO = 0,
where v is in the direction of the outward normal to D and /3 is the BRiot number, has also
been considered. In these studies, a quantity of primary interest is the critical value of 6, 6cr,

through which the solution of (1.1) undergoes a rapid transition from being 0(1) to O(e"),
when > 1. Such a situation is referred to as thermal explosion. Another quantity of
interest is the transitional value of a, a,,, below which (1.1) loses the abrupt change in its
response to a change in 6. Such a situation is referred to as loss of criticality. (See [1, 2, 3],
among others.)

When 6 is below the critical value, the solution of (1.1), for a > 1, can still become
exponentially large if the initial and/or the boundary conditions are sufficiently large. The
influence of the initial and boundary conditions has been considered by Tam in [5] and [6]
and by Tam and Chapman [7]. Recently, using a comparison result for parabolic equations,
and a two-step linearization, Tam [8] showed that the influence of the initial and boundary
conditions can be examined in terms of the solution of the simple heat equation and the first
eigenfunction for the domain. Estimates of the critical parameters are given by the solution
of a relatively simple transcendental equation. The need to solve the original non-linear
parabolic equation is obviated.
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In this note, we consider a rectangular block and a finite circular cylinder. The influence
of the Biot number on 6,, and ,r is examined in Section 2, while the influence of a simple
non-uniform boundary condition on 6,,cr is examined in Section 3. In a numerical study of
(1.1) subject to (x, 0) = 0, 0 = 0 on D, Parks [4] obtained 6,,r for a cube and a right
circular cylinder. Since 0 = 0 on AD can be considered as the limiting situation as - o
in the natural boundary condition, we compare these values with the estimates obtained
here. It is seen that good agreement is achieved.

2. The critical parameters for a rectangular block and a finite circular cylinder, with
natural boundary conditions

We consider the following initial and boundary conditions for the solution of (1.1):

0O
0(x, 0) = 0, + 0 = 0 for xe D,

and we want to obtain estimates of the transitional value of a; and critical values of 3, for
given values of a and fl.

For the sake of completeness, we include the following discussions leading to the transcen-
dental equation which will be used to obtain estimates on 6,,c and a,r. Further details can be
found in [8].

Let On and 2i be the normalized eigenfunctions and eigenvalues of the boundary-value
problem

Vofn = -in5i

av + /b = 0 on aD. (2.1)

Without loss of generality, we can take 1, > O. Let T(t) be the solution of the initial-value
problem

dT / 2 T + 5 f exp T(¢) V, T(() } d. T (2.2)
t = ',"'f' + T(¢) 

Equivalently, T can be expressed as the solution of the integral equation

I - 6e4' eA~4 1 (r ) exp _T( ' ) 0 1( ¢)T = b e 'tt ·e xp la + T(z) 1,(¢)} do (2.3)

where the dot is used to denote the inner product f g = D f(r) g(¢) d V. With T given by
the above, we consider the IBVP

X 2X + {a + m(x) x) T t(x) (2.4)
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X(x, 0) = 0; v + f = 0, x on aD;

where m(x) > 0 is a function to be determined.
Let K(x, , t) be the Robin function for the system

K, - V2 K = 0,

aK
K(x, ,0) = 0; + K = 0, x on D.

We have

K(x, r, t) = e "On(x) (). -
n=l

Since K is the response function to a point source, it is clear that K > 0 in D. The solution
of (2.4) can be written as

x(x, t; m) = 5 g K(x, , t - z) exp c + m() T(r) 1 dT. (2.5)f ct + m( )T~z>Pi(~)S .(2.5)

Our objective is to choose m(x) so that (x, t) is a lower solution of (1.1), subject to
0(x, 0) = 0, aO/av + /0 = 0 on aD; i.e., we wish to make

PX = X,-V 2 x- exp (S X)< 0,

which then implies x(x, t; m) < 0. Now, we have

PX = ° exp amT -exp + mT 

Since the function exp [ctu/(a + u)] is an increasing function of u, we will have Px < 0, if
we can choose m to make

mTb1 < f K(x, , t - ) exp [+ mT ]d (2.6)
Ja + mT 1 j

Using (2.3), the above becomes

m go e- ('- )l(X)0(g) exp [ + (T)()1 ()1 dT

F K(x, , t - ')' exp + m() T(T) () ] dT. (2.7)+ m()T( I . (2.7)
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Since the exponential function in the integrands is bounded between 1 and exp (a), and both
4, and K are positive in D, it is clear that by choosing m to be sufficiently small, the above
inequality can be satisfied, and consequently, we have constructed a lower solution for 0. An
entirely analogous procedure with M > 0 replacing m yields an upper solution if M is
sufficiently large, i.e., X(x, t; M) > 0. Ifm and Mdo not deviate much from unity, X(x, t; 1)
serves as a good approximation for 0. Numerical work on a specific example in [8] showed
that the derivation of m and M from unity is indded small. Further, by examining (2.7), we
see that the deviation is governed by the magnitude of

{n=2 e-~('-)tbn(x)ck(~)} exp { T() () (2.8)

Since the shape of the exponential function in (2.8) is close to a constant multiple of 4p, the
orthogonality of the eigenfunctions implies that expression (2.8) is small. On the basis of the
above observations, we shall take X(x, t; 1) as an approximation for 0.

We now make the following observation. The function x(x, t; 1) increases with T(t). If
T(t) remains O(1), so does X. If T(t) becomes exponentially large, X will be exponentially
large also. Thus, the behaviour of T determines that of X. To see the influence of cc and (5 on
T, we need only examine the transcendental equation

exp = I (2.9)(5 - exo "¢) P[c + T,()] (2.9)

which gives the stationary values of T. The integral in (2.9), plotted against T, is an S-shaped
curve. If o is small, (2.9) has a unique solution which is O(1). If increased past a certain
value 6e, (2.9) has three solutions, the small one is O(1) while the large one is O(e'). Thus,
if cc is sufficiently large, the large solution is exponentially large. If is further increased past
the critical value, 6c,, (2.9) again has only one solution, which is O(e"). Regarding the
dependence of the solution on a, we note that if the value of a is decreased from ca > 1, we
reach a transitional value c,,, at which point the S-shaped curve flattens out so that (2.9) has
only one solution regardless of the magnitude of 6. This phenomenon is referred to as the
loss of criticality. We now apply (2.9) to the following specific configurations:

2.1. The rectangular block

We consider the rectangular block D defined by -1 < x < 1, -a < y < a, -b < z < b.
In a straight-forward manner, we obtain the first eigenvalue for (2.1):

22 = k2 + 12 + 7y,

where k,, 1, and y, are respectively the first positive zeroes of the equations k tan k = /3;
1 tan la = /3 and y tan yb = fl. The corresponding normalized eigenfunction is

, = Kcos kxcos ly cosyz
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Table 1. 6, for different values of a and 1 for the rectangular block - 1 < x < 1, - 1 < y < 1, -b < z < b

ax 6, = 10000

b= 1 b=2 b=4

20 2.604 2.68* 1.953 1.790
60 2.499 2.58* 1.953 1.717

100 2.477 2.53* 1.858 1.703

* From Parks [4], B x c

x It, = 100

b=l b=2 b=4

20 2.554 1.917 1.756
60 2.499 1.838 1.684

100 2.429 1.824 1.671

a 6, 3= 10

b= b=2 b=4

20 2.175 1.645 1.498
60 2.087 1.578 1.437

100 2.070 1.566 1.425

Table 2. o,, for different values of for the rectangular block -1 x < 1, - 1 y < 1, -b < z < b

b a,,

= 10 A= 100 A= 10000
1 4.193 4.209 4.209
2 4.179 4.209 4.209
3 4.198 4.209 4.209

where

(I sin 2k 1/2/ sin 2a1 1, )'/2 /
+ 21+

sin 2by,' -/2

2y,J

For various values of a, b, /3, we compute the values of 6cr. Some representative results are
tabulated in Table 1, and compared with existing results when available. The transitional
values ,,r are also computed and tabulated in Table 2.

2.2. The finite circular cylinder

We consider a circular cylinder D defined by 0 < r 1, -b < z < b. We obtained the
first eigenvalue for (2.1):

A2 = 2 2

where y, is as determined in the last section, and u, is the first zero of the equation

YJ 1(O) = Jo (),
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Table 3. r,, for different values of , = 20, for the finite circular cylinder 0 < r < 1, - b < z < b

b 6,

# = 10 3 = 10000 /-,* oo, Parks

1 2.568 2.661 2.912 2.93
2 2.547 2.801 2.259
4 2.506 2.979 2.096

Table 4. ,, for different values of for the finite circular cylinder 0 < r < 1, - b z b

b :tr

/=10 = 100 = =10000

1 4.1836 4.1992 4.2070
2 4.1914 4.1992 4.1992
4 4.1914 4.1992 4.1992

where JO and Jl are respectively Bessel functions of order zero and one. The corresponding
normalized eigenfunction is

0 = K cos ylzJo(pr)

where

K= sin 2by y 2 + 212
+ 2y, + i

As in the previous section, we tabulate some critical values of 6 in Table 3, and the
transitional value of a in Table 4.

3. The critical parameters for a rectangular block and a finite circular cylinder, with
non-uniform boundary conditions

We consider the following initial and boundary conditions for the solution of (1.1):

O(x, 0) = 0; (x, t) = g(x), x e OD. (3.1)

Let 0, and i, denote respectively the first eigenvalue and eigenfunction of the problem

V2 = -, 2 ,

(3.2)4 = 0 on D;

and let P(x, t) be the solution of

Pt = V2 P,

P(x, 0) = 0; P(x, t) = g(x) on D. (3.3)
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In almost the same way that we obtained (2.9), we have, from [8], the following transcendental
equation

= r,(X) exp a + Tf,() + P(, oo) dV.' Tl(6)+P(~, c)

For a given g(x), and hence P(, oc), a critical value '5cr can be determined such that for
6 > 6c,, (3.4) has only one solution which is O(e"). We apply this result to the two configurations
considered in Section 2, with a simple non-uniform boundary temperature.

3.1. The rectangular block

We let D be defined by 0 < x < 1, 0 < y < a, 0 < z < b; and g(x) be given by

g(O, y, z) = A sin Y sin rZ
a - '

g = 0 on all other bounding surfaces.

We then have

2 = (l++a ,

_2/ 2 . .ry zZ
1 - sin rx sin -sin -

ab a b

and

(3.4)

ry 7 Z
A sin sin

a b

sinh [7r(a 2 + b2)1/2
ab 

sinh [r(a2 + b2)12 (1
I ab

For different values of a, b and A, we compute the value of 6,,r for a = 20. The results are
given in Table 5.

Table 5. 6, for various values of A, = 20, for the rectangular block 0 < x < 1, 0 < y < 1, 0 < z < 1 with
0(0, y, z) = A sin try sin Irz, 0 = 0 on all other sides

A 0 5 10 20 40

6c, 10.418 5.868 2.655 0.4596 0.03599
6, adjusted 2.604 1.467 0.664 0.115 0.09000
to scaling (Parks' value = 2.68)
of Sec. 2

P(x, co) = - x)].
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Table 6. 6,., for various values of A, = 20, for the circular cylinder 0 < r < 1,
0(0, r) = AJo(2.405r); 0 = 0 on all other sides

0 < z < a, with

A 0 5 10 20 40

I, 5.526 1.900 0.585 0.730 0.00513
a= I
it., 2.913 1.736 0.827 0.150 0.01200
a = 2 (Parks' value = 2.93)

3.2. The finite circular cylinder

We let D be defined by 0 < r < 1, 0 < z < a; and g(x) be given by

g(r, 0).= AJO(cr), c = 2.405,

g(r, z) = 0 on all other bounding surfaces.

We then have

,2 = c2 + 2
a2

A' = 2 1 sin JO(cr)

a 0.5191 a

and

P(r, z, oo) = i sinh c(a - z) JO(cr).
sinh ca

For different values of a and A, we compute the value of 6,r for = 20 and the results are
given in Table 6.

4. Concluding remarks

We have shown that for non-Class A geometries where the first eigenfunction can be found,
the critical parameters for the non-linear parabolic equation can be estimated relatively
easily. Even for other geometries where the first eigenfunction cannot be determined analytic-
ally, using the transcendental equation to estimate the critical parameters can still offer some
computational advantage. Further, the two-step linearization procedure can conceivably be
used in similar problems.
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